Influence of the Façade Elements on Insolation Regime of the Premises of Civil Buildings

Number of journal: 6-2019
Autors:

Zemtsov V.A.
Korkina E.V.
Shmarov I.A.
Zemtsov V.V.

DOI: https://doi.org/10.31659/0044-4472-2019-6-16-23
УДК: 628.921/.928

 

AbstractAbout AuthorsReferences
Insolation is a necessary factor for safe and comfortable human life. The article presents the results of studies of the insolation regime of premises in buildings intended for construction in the Central zone of the Russian Federation. As a subject of research, the main indicator of insolation is considered – the total duration of insolation of differently oriented rooms with balconies and loggias. In the work, the studies of insolation regime of premises with one, the most common type of window of 1.5 m height and 2 m width in combination with the balconies and loggias of various depths and lengths were conducted. Studies of the insolation regime of the premises were carried out using solar maps, making it possible to calculate the duration of insolation simultaneously for different months of the year. The method for determining the duration of insolation of the room is based on the application of the nanoCAD program. As a result of the calculated studies, proposals on the conditions of provision of normalized duration of insolation of rooms with balconies of limited and unlimited length and rooms with loggias in buildings depending on their orientation are made. Research can find practical application in the process of developing a section on ecology both for individual civil objects and when designing residential complexes.
V.A. ZEMTSOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
Е.V. KORKINA1, 2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
I.A. SHMAROV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
V.V. ZEMTSOV1, Engineer, (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Research Institute of Building Physics of RAACS (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Справочная книга по светотехнике. Раздел «Инсоляция и солнцезащита» / Под ред. Ю.Б. Айзенберга. 3-е изд. перераб. и доп. М.: Знак, 2006. 972 с.
1. Spravochnaya kniga po svetotekhnike. Razdel «Insolyaciya i solncezashchita» Pod red. Yu.B. Ajzenberga. 3-e izd. pererab. i dop. [Reference book on lighting. Section «Insolation and Sun Protection»]. Moscow: Znak. 2006. 972 p.
2. Шмаров И.А., Земцов В.А., Коркина Е.В. Инсоляция: практика нормирования и расчета // Жилищное строительство. 2016. № 7. С. 48–53.
2. Shmarov I.A., Zemtsov V.A., Korkina E.V. Insolation: the practice of rationing and calculation. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2016. No. 7, pp. 48–53. (In Russian).
3. Darula S., Christoffersen J., Malikova M. Sunlight and insolation of building interiors. Energy Procedia. 2015. Vol. 78, pp. 1245–1250.
4. Земцов В.А., Гагарина Е.В. Экологические аспекты инсоляции жилых и общественных зданий // Фундаментальные исследования РААСН по научному обеспечению развития архитектуры, градостроительства и строительной отрасли Российской Федерации в 2010 году. Научные труды РААСН. Москва–Орел, 2011. C. 406–412.
4. Zemtsov V.A., Gagarina E.V. Ecological aspects of insolation of residential and public buildings. Basic research of the Russian Academy of Architecture and Construction Sciences on scientific support of the development of architecture, urban planning and the construction industry of the Russian Federation in 2010. Scientific works of RAACS. Moskva-Orel. 2011, pp. 406–412. (In Russian).
5. Korniyenko S. Assessment of influence of designed building on insolation conditions of residential development. Conference: International Conference on Chemical, Material and Food Engineering. 2015, pp. 529–532. DOI: 10.2991/cmfe-15.2015.128.
6. Kotey N.A., Barnaby C.S., Wright J.L., Collins M.R. Solar gain through windows with shading devices: simulation versus measurement. ASHRAE Research Project RP-1311. 2009. Vol. 115. Part. 2, pp. 18–30.
7. Esquivias P.M., Moreno D., Navarro J. Solar radiation entering through openings: Coupled assessment of luminous and thermal aspects. Energy and Buildings. 2018. Vol. 175, pp. 208–218.
8. Куприянов В.Н., Седова Ф.Р. Обоснование и развитие энергетического метода расчета инсоляции жилых помещений // Жилищное строительство. 2015. № 5. С. 83–87.
8. Kupriyanov V.N., Sedova F.R. Justification and development of a power method of calculation of insolation of premises. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2015. No. 5, pp. 83–87. (In Russian).
9. Куприянов В.Н. К оценке применимости стек-лопакетов для обеспечения нормированного естественного освещения в помещениях зданий // Известия Казанского государственного архитектурно-строительного университета. 2017. № 3 (41). С. 124–130.
9. Kupriyanov V.N. To the assessment of the applicability of glass packs for providing normalized natural lighting in buildings. Izvestiya Kazanskogo gosudarstvennogo arhitekturno-stroitel’nogo universiteta. 2017. No. 3 (41), pp. 124–130. (In Russian).
10. Chatzipoulka Ch., Compagnon R., Kaempf J., Nikolopoulou M. Sky view factor as predictor of solar availability on building facades. Solar Energy. 2018. Vol. 170, pp. 1026–1038.
11. Levinson R. Using solar availability factors to adjust cool-wall energy savings for shading and reflection by neighboring buildings. Solar Energy. 2019. Vol. 180, pp. 717–734.
12. Lee K., Levermore G. Estimation of surface solar irradiation using sky view factor, sunshine factor and solar irradiation models according to geometry and buildings. 4 International Conference On Building Energy, Environment. Melbourne, Australia. 2018, pp. 329–332.
13. Lou S., Li D.H.W., Lam J.C., Lee E.W.M. Estimation of obstructed vertical solar irradiation under the 15 CIE Standard Skies. Building and Environment. 2016. Vol. 103, pp. 123–133.
14. Marinoski D.L., Melo A.P., Weber F.S., Güths S., Lamberts R. Measurement of solar factor of glazing and shading devices using a solar calorimeter. Building and Environment. 2018. Vol. 144, pp. 72–85.
15. Kerekes A. Effect of wall thickness on the solar gain. Journal of sustainable energy. 2016. Vol. 7. No. 1, pp. 15–21.
16. Moreno B., Hernández J. A. Analytical solutions to evaluate solar radiation overheating in simplified glazed rooms. Building and Environment. 2018. Vol. 140, pp. 162–172.
17. Rodriguês M.J. Influence of solar shading and orientation on indoor climate. A case study in Maputo City. Sweden: Media-Tryck: Lund University. 2010. 167 p.
18. Kontoleon K.J. Energy saving assessment in buildings with varying façade orientations and types of glazing systems when exposed to sun. In International Journal of Performability Engineering. 2013. Vol. 9. No. 1, pp. 33–48.
19. Lan Pan. Orientation effect on thermal and energy performance of vertical greenery systems. Energy and Buildings. 2018. Vol. 175, pp. 102–112.
20. Земцов В.А., Шмаров И.А., Земцов В.В., Козлов В.А. Методика расчета продолжительности инсоляции помещений жилых и общественных зданий и территорий по солнечным картам // Жилищное строительство. 2018. № 7. С. 32–37.
20. Zemtsov V.A., Shmarov I.A., Zemtsov V.V., Kozlov V.A. The method of calculating the insolation duration of the premises of residential and public buildings and territories using solar maps. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 7, pp. 32–37. (In Russian)

For citation: Zemtsov V.A., Korkina E.V., Shmarov I.A., Zemtsov V.V. Influence of the façade elements on insolation regime of the premises of civil buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 6, pp. 16–23. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-6-16-23


Print   Email