Taking Into Account the Non-Stationarity of Heat Transfer During Thermal Engineering Inspections of Enclosing Structures

Number of journal: 7-2021
Autors:

Levin E.V.,
Okunev A.Yu.

DOI: https://doi.org/10.31659/0044-4472-2021-7-19-29
УДК: 536.2

 

AbstractAbout AuthorsReferences
Methods for measuring the density of heat fluxes and thermal imaging diagnostic used for thermal engineering inspections of enclosing structures require that the heat transfer in the enclosing structures be close to stationary. But the enclosing structures are constantly exposed to external thermal influences (solar radiation, daily changes in the temperature of the outside air, etc.). Therefore, during inspections accessible and reliable methods for estimating the relaxation time of thermal effects in the thickness of structures should be used. During this time, thermal imaging surveys usually are not carried out, and the results obtained by measuring the heat flux density should be excluded from further mathematical processing. The paper presents the results of a study of the values of the characteristic relaxation times of thermal effects in single-layer, multi-layer (of various types) and translucent enclosing structures. Formulas for calculating the time of thermal inertia for enclosing structures are obtained. The results are obtained by numerical simulation of one-dimensional non-stationary heat transfer.
E.V. LEVIN1, Candidate of Sciences (Physics and Mathematics) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.Yu. OKUNEV1,2, Candidate of Sciences (Physics and Mathematics) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Research Institute of Building Physics of the Russian Academy of Architecture and Construction Sciences, RAACS (21, Locomotivny Driveway, Moscow, 127238, Russian Federation)
2 State University of Land Use Planning (15, Kazakova Street, Moscow, 105064, Russian Federation)

1. Salov A.S., Gajnanova E.S. Features of monitoring and inspection of the thermal state of building structures. Vestnik Evrazijskoj nauki. 2019. No. 1. (In Russian).
2. Komov E.P., Lebedev O.V., Pozdnyak V.S. Praktika primeneniya teplovogo nerazrushayushchego kontrolya pri energeticheskih obsledovaniyah mnogokvartirnyh zhilyh domov. Uchebno-metodicheskoe posobie [The practice of using thermal non-destructive testing in energy inspections of apartment buildings. Study guide]. Magnitogorsk: VELD. 2014. 40 p.
3. Karpov D., Sinitsyn A. Algorithm for integrated non-destructive diagnostics of technical condition of structures of buildings and constructions using the thermogram analysis. E3S Web of Conferences. 2020. Vol. 161. 01040. DOI: https://doi.org/10.1051/e3sconf/202016101040
4. Apostolska R. Measurement of Heat-Flux of New Type Facade Walls. Sustainability. 2016. Vol. 8 (10), pp. 1031. DOI: https://doi.org/10.3390/su8101031
5. Jack Hulme, Sean Doran BRE. In-situ measurements of wall U-values in English housing. 2014. 76 p.
6. Li F.G.N., Smith A.Z.P., Biddulph P. et al. Solid-wall U-values: heat flux measurements compared with standard assumptions. Building Research & Information. 2015. Vol. 43, pp. 238–252.
7. Dybok V.V., Kyamyarya A.R., Lazurenko N.V. Thermal diagnostics of building envelopes and structures in natural conditions. Tekhniko-tekhnologicheskie problemy servisa. 2011. No. 3 (17), pp. 14–19. (In Russian).
8. Danilevskij L.N., Danilevskij S.L. Determination of thermal characteristics and energy classification of operated residential buildings. Byulleten’ stroitel’noj tekhniki (BST). 2016. No. 6, pp. 45–47. (In Russian).
9. Lazurenko N.V., Kyamyarya, A.R. Quality control of thermal protection of buildings using contact and non-contact research methods. Nauchno-tekhnicheskij vestnik informacionnyh tekhnologij, mekhaniki i optiki. 2007. No. 44, pp. 30–35. (In Russian).
10. Gorshkov A.S., Rymkevich P.P., Vatin N.I. On the thermotechnical homogeneity of a two-layer wall structure. Energosberezhenie. 2014. No. 7, pp. 58–63.(In Russian).
11. Kornienko S.V. Comprehensive assessment of thermal protection of the building envelope envelope. Inzhenerno-stroitel’nyj zhurnal. 2012. No. 7 (33), pp. 43–49. (In Russian).
12. Papadopoulos A.M., Konstantinidou C.V. Thermal insulation and thermal storage in a building’s envelope: A question of location. Building Environ. 2008. Vol. 43, pp. 166–175.
13. Okunev A.YU. Influence of errors in setting external operating parameters on the accuracy of temperature measurement with infrared devices. Izmeritel’naya tekhnika. 2016. No. 1, pp. 60–64. (In Russian).
14. Levin E.V., Okunev A.YU. Investigation of the accuracy of temperature measurement based on the analysis of the energy balance at the receiver of the IR device. Izmeritel’naya Tekhnika. 2015. No. 5, pp. 48–52. (In Russian).
15. Chen G., Liu X., Chen Y., Guo X., Tan Y. Coupled heat and moisture transfer in two common walls. Lecture Notes in Electrical Engineering. 2014. Vol. 3, pp. 335–342.
16. Gorshkov A.S., Rymkevich P.P., Vatin N.I. Modeling the processes of unsteady heat transfer in wall structures made of aerated concrete blocks. Inzhenerno-stroitel’nyj zhurnal. 2014. No. 8, pp. 38–66. (In Russian).
17. Tarasova V.V. Mathematical modeling of non-stationary thermal processes in the building envelope. Sovremennye naukoemkie tekhnologii. 2016. No. 8–2, pp. 265–269. (In Russian).
18. Tabunshchikov YU.A., Borodach M.M. Matematicheskoe modelirovanie i optimizaciya teplovoj effektivnosti zdanij [Mathematical modeling and optimization of thermal efficiency of buildings]. Moscow: AVOK-PRESS. 2002. 194 p.
19. Ivanov V.V., Karaseva L.V., Tihomirov S.A. Non-stationary heat transfer in multilayer building structures. Izvestiya vuzov. Stroitel’stvo. 2001. No. 9–10, pp. 7–10. (In Russian).
20. Ivanov V.V., Karaseva L.V., Volochaj V.V., Tihomirov S.A. The influence of insulation on the dynamics of thermal regimes of building structures. Zhilishchnoe stroitel’stvo [Housing Construction]. 2002. No. 5, pp. 15–16. (In Russian).
21. Ivanov V.V., Karaseva L.V., Tihomirov S.A. Modeling heat transfer processes in multilayer enclosing structures. Third Russian National Conference on Heat Transfer. Vol. 7. Thermal conductivity and thermal insulation. Moscow. 2002, pp. 131–134. (In Russian).
22. Gorshkov A.S. Thermal characteristics of building envelopes. Energosberezhenie. 2017. No. 7, pp. 52–56. (In Russian).
23. Du Fort E.C., Frankel S.P. Stability conditions in the numerical treatment of parabolic differential equations. Mathematical tables and other aids to computation. 1953. Vol. 7. No. 43, pp. 135–152. https://doi.org/10.2307/2002754

For citation: Levin E.V., Okunev A.Yu. Taking into account the non-stationarity of heat transfer during thermal engineering inspections of enclosing structures. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 7, pp. 19–29. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-7-19-29


Print   Email