Evaluation of the Duration of Indoor Comfort by Computer Simulation

Number of journal: 8-2023
Autors:

Petrov A.S.

DOI: https://doi.org/10.31659/0044-4472-2023-8-43-52
УДК: 628.8:697.1:004.942

 

AbstractAbout AuthorsReferences
According to Federal Law No. 384 «Technical Regulations on the Safety of Buildings and Structures», buildings are subject to requirements for insolation and sun protection, lighting, noise protection, indoor microclimate, etc. An analysis of the existing standard methods for calculating the corresponding positions made it possible to establish that these requirements are achieved without checking their mutual influence in the annual operation cycle. At the moment, there is no calculated indicator in the regulatory literature that summarizes the listed requirements in the form of a single final level of comfort in building premises. The study presents full-scale measurements of the microclimate parameters of a public building during the year, which made it possible to establish the characteristic periods of discomfort, their duration and causes. The results of the field study are compared with the calculated values obtained by computer simulation. It is shown that the use of the modeling method based on visual programming makes it possible to predict the duration of discomfort in the room and their periods in the annual cycle of operation, depending on the structural, thermal engineering, space-planning and other parameters of the building, as well as the climate of the construction region. It was found that thermal, light, insolation comfort is not constant throughout the year. The necessity of substantiating the comfort parameters through the duration of their provision during the year is revealed.
A.S. PETROV, Candidate of Technical Sciences, Associate Professor of the Department of Architecture, Russia, (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kazan State University of Architecture and Civil Engineering (1, Zelenaya Street, Kazan, 420043, Russian Federation)

1. Осипова Е.В., Айдарова Г.Н., Куприянов В.Н., Мирсаяпов И.Т. Принципы организации жилой архитектурной среды в условиях пост-пандемийных изменений // Известия Казанского государственного архитектурно-строительного университета. 2023. № 1 (63). С. 61–72. DOI: 10.52409/20731523_2023_1_61.
1. Osipova E.V., Aidarova G.N., Kupriyanov V.N., Mirsayapov I.T Principles of organizing a residential architectural environment in the context of post-pandemic changes. Izvestiya of the Kazan State University of Architecture and Civil Engineering. 2023. No. 1 (63), pp. 61–72. (In Russian). DOI: 10.52409/20731523_2023_1_61.
2. Куприянов В.Н. Приращение температуры воздуха в помещении при воздействии солнечной радиации через световой проем // Известия Казанского государственного архитектурно-строительного университета. 2022. № 4 (62). С. 6–17. DOI: 10.52409/20731523_2022_4_6.
2. Kupriyanov V.N. Increment of air temperature in the room under the influence of solar radiation through the light aperture. Izvestiya of the Kazan State University of Architecture and Civil Engineering. 2022. No. 4 (62), pp. 6–17. (In Russian). DOI: 10.52409/20731523_2022_4_6.
3. Shengkai Zhao, Liu Yang, Siru Gao, Yongchao Zhai. Field study on human thermal comfort and indoor air quality in university dormitory buildings. E3S Web Conf. 356 03015 (2022) DOI: 10.1051/e3sconf/202235603015.
4. Pablo Aparicio-Ruiz, Elena Barbadilla-Martín, José Guadix, Jesús Muñuzuri, A field study on adaptive thermal comfort in Spanish primary classrooms during summer season. Building and Environment. 2021. Vol. 203. 108089. https://doi.org/10.1016/j.buildenv.2021.108089.
5. Valeria De Giuli, Roberto Zecchin, Livio Corain, Luigi Salmaso, Measured and perceived environmental comfort: Field monitoring in an Italian school. Applied Ergonomics. Vol. 45. Iss. 4. 2014, pp. 1035–1047. https://doi.org/10.1016/j.apergo.2014.01.004.
6. Bin Yang, Thomas Olofsson, Faming Wang, Weizhuo Lu, Thermal comfort in primary school classrooms: A case study under subarctic climate area of Sweden. Building and Environment. 2018. Vol. 135, pp. 237–245. https://doi.org/10.1016/j.buildenv.2018.03.019.
7. Jindal A. Thermal comfort study in naturally ventilated school classrooms in composite climate of India. Build. Environ. No. 142 (2018), pp. 34–46. https://doi.org/10.1016/j.buildenv.2018.05.051.
8. Петров А.С., Забирова А.И. К вопросу обеспеченности уровня теплового комфорта в жилых квартирах с учетом индексов PMV и PPD // Известия Казанского государственного архитектурно-строительного университета. 2019. № 3 (49). С. 139–146.
8. Petrov A.S., Zabirova A.I. On the issue of providing the level of thermal comfort in residential apartments, taking into account the PMV and PPD indices. Izves-tiya of the Kazan State University of Architecture and Civil Engineering. 2019. No. 3(49), pp. 139–146. (In Russian).
9. Зарецкая М.А. Псаров С.А., Шумилин Е.В. Тепловой комфорт в помещении при использовании различных светопрозрачных конструкций и отопительных приборов // Ученые заметки ТОГУ. 2013. Т. 4. № 4. С. 1586–1590.
9. Zaretskaya M.A. Psarov S.A., Shumilin E.V. Thermal comfort in the room when using various translucent structures and heating devices. Uchenye zametki TOGU. 2013. Vol. 4. No. 4, pp. 1586–1590. (In Russian).
10. Мора Р., Метайер М. Тепловой комфорт в учреждениях здравоохранения // Энергосбережение. 2022. № 8. С. 48–55.
10. Mora R., Metaier M. Thermal comfort in healthcare facilities. Energosberezhenie. 2022. No. 8, pp. 48–55. (In Russian).
11. De Dear R., Kim J., Candido C., Deuble M. Adaptive thermal comfort in australian school classrooms. Build. Res. Inf. 2015. No. 43, pp. 383–398. https://doi.org/10.1080/ 09613218.2015.991627.
12. Barbadilla-Martín E., Salmeron J.M., Liss´en, Guadix Martín J., Aparicio-Ruiz P., Brotas L., Field study on adaptive thermal comfort in mixed mode office buildings in southwestern area of Spain. Build. Environ. 2017. No. 123. https://doi.org/ 10.1016/j.buildenv.2017.06.042.
13. Логадырь С.П. Оценка освещенности учебных помещений на соответствие требуемым нормам // Научно-практические исследования. 2020. № 3–4 (26). С. 21–23.
13. Logadyr’ S.P. Evaluation of the illumination of educational premises for compliance with the required standards. Nauchno-prakticheskie issledovaniya. 2020. No. 3–4 (26), pp. 21–23. (In Russian).
14. Муравьева Н.А., Соловьев А.К., Шмаров И.А. Актуальные проблемы естественного освещения зданий и пути их решения // Известия высших учебных заведений. Технология текстильной промышленности. 2018. № 3 (375). С. 174–184.
14. Murav’eva N.A., Solov’ev A.K., Shmarov I.A. Actual problems of natural lighting in buildings and ways to solve them. Izvestiya vysshikh uchebnykh zavedenii. Tekhnologiya tekstil’noi promyshlennosti. 2018. No. 3 (375), pp. 174–184. (In Russian).
15. Стеблий Н.Н., Акименко В.Я. К вопросу поиска путей компенсации недостатка инсоляции и естественной освещенности жилых помещений. Здоровье и окружающая среда: Сборник материалов международной научно-практической конференции. Минск, 15–16 ноября 2018 г. Т. 2. С. 117–120.
15. Steblii N.N., Akimenko V.Ya. To the question of finding ways to compensate for the lack of insolation and natural light in residential premises. Health and environment: collection of materials of the international scientific and practical conference. Minsk, 2018. Vol. 2, pp. 117–120. (In Russian).
16. Земцов В.А., Коркина Е.В., Шмаров И.А., Земцов В.В. Влияние фасадных элементов на инсоляционный режим помещений гражданских зданий // Жилищное строительство. 2019. № 6. С. 16–23. DOI: 10.31659/0044-4472-2019-6-16-23.
16. Zemtsov V.A., Korkina E.V., Shmarov I.A., Zemtsov V.V. Influence of facade elements on the insolation regime of premises of civil buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 6. pp. 16–23. (In Russian). DOI 10.31659/0044-4472-2019-6-16-23.
17. Pan Yiqun, Zhu Mingya, Lyu Yan, Yang Yikun, Liang Yumin, Yin Ruxin, Yang Yiting, Jia Xiaoyu, Zeng Fei, Huang Seng, Hou Danlin, Xu Lei, Yin Rongxin, Yuan Xiaolei. Building energy simulation and its application for building performance optimization: A review of methods, tools, and case studies. Advances in Applied Energy. 2023. No. 10. 100135. 10.1016/j.adapen.2023.100135.
18. Ganji Hoda, Utzinger Dennis, Bradley David. Create and validate hybrid ventilation components in simulation using grasshopper and python in rhinoceros. Conference: Building Simulation. 2019. 10.26868/25222708.2019.211292.
19. Bre F., Fachinotti V.D. A computational multi-objective optimization method to improve energy efficiency and thermal comfort in dwellings. Energy Build. 2017. No. 154, pp. 283–94. https://doi.org/10.1016/j.enbuild.2017.08.002.
20. Vera S., Uribe D., Bustamante W. et al. Optimization of a fixed exterior complex fenestration system considering visual comfort and energy performance criteria. Building and Environment. 2017. No. 113, pp. 163–74.
21. Gercek M., Durmuş Arsan Z. Energy and environmental performance based decision support process for early design stages of residential buildings under climate change. Sustain Cities Soc. 2019. No. 48. https://doi.org/10.1016/j.scs.2019.101580.
22. Yao J., Zhong J., Yang N. Indoor air quality test and air distribution CFD simulation in hospital consulting room. Int J Low-Carbon Technol. 2022. No. 17, pp. 33–7. https://doi.org/10.1093/ijlct/ctab084.
23. Nocera F., Faro A. Lo, Costanzo V., Raciti C. Daylight performance of classrooms in a mediterranean school heritage building. Sustain. 2018. No. 10. https://doi.org/10.3390/su10103705.
24. Futrell B.J., Ozelkan E.C., Brentrup D. Bi-objective optimization of building enclosure design for thermal and lighting performance. Build Environ. 2015. No. 92: 591–602. https://doi.org/10.1016/j.buildenv.2015.03.039.
25. Lu S., Lin B., Wang C. Investigation on the potential of improving daylight efficiency of office buildings by curved facade optimization. Build Simul. 2020. No. 13, pp. 287–303. https://doi.org/10.1007/s12273-019-0586-5.
26. Chen Y., Guo M., Chen Z., Chen Z., Ji Y. Physical energy and data-driven models in building energy prediction: A review. Energy Reports. 2022. No. 8, pp. 2656–71. https://doi.org/10.1016/j.egyr.2022.01.162.
27. O’Brien W., Carlucci S., Hong T., Sonta A., Kim J. Simulation-aided occupant-centric building design: A critical review of tools, methods, and applications. Energy Build. 2020. No. 224. https://doi.org/10.1016/j.enbuild.2020.110292.
28. Lien S.K., Sandberg N.H., Lindberg K.B., Rosenberg E., Seljom P., Sartori I. Comparing model projections with reality: Experiences from modelling building stock energy use in Norway. Energy Build. 2022. No. 268. https://doi.org/10.1016/j.enbuild.2022.112186.
29. Mohammadiziazi R., Copeland S., Bilec M.M. Urban building energy model: Database development, validation, and application for commercial building stock. Energy Build. 2021. No. 248. 111175. https://doi.org/10.1016/j.enbuild.2021.111175.
30. Rijal Hom, Humphreys Michael, Nicol Fergus. Development of a window opening algorithm based on adaptive thermal comfort to predict occupant behavior in Japanese dwellings. Japan Architectural Review. 2018. No. 1. 10.1002/2475-8876.12043.

For citation: Petrov A.S. Evaluation of the duration of indoor comfort by computer simulation. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 8, pp. 43–52. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-8-43-52


Print   Email