Increasing the Thermal Stability of Wood-Based Materials

Number of journal: 8-2023
Autors:

Stepina I.V.,
Zhukov A.D.,
Bazhenova S.I.,
Stenechkina K.S.

DOI: https://doi.org/10.31659/0044-4472-2023-8-64-69
УДК: 624.011.1

 

AbstractAbout AuthorsReferences
Wood-based materials are widely used in modern construction technologies as part of the concept of biopositive construction related to the design and construction of buildings, taking into account the impact on human health and well-being, as well as on the ecosystem as a whole. The main disadvantage of bio-positive wood materials, like any organic materials, is their high flammability. In this regard, improving the thermal stability of wood materials and, as a consequence, reducing their combustibility is a very urgent task. The purpose of the research described in the article was to study the possibility of increasing the thermal stability of wood materials and, as a consequence, reducing their combustibility. As a result of conducted active experiment and statistical processing of its results, the optimum flow rate of flame retardant and substrate moisture content were established. To determine the kinetic parameters of the thermal decomposition process of cellulose materials of different chemical composition (integral method), a Du Pont-9900 automated modular thermal analyzer system was used. As a result of studies it was found that boron-nitrogen wood surface modifiers stabilize lignocarbohydrate complex of wood at the stage of flame burning (the second temperature interval) and significantly reduce the value of weight loss of the substrate at this stage.
I.V. STEPINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.D. ZHUKOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.I. BAZHENOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
K.S. STENЕCHKINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Тer-Zakaryan K.A., Zhukov A.D., Bobrova E.Yu., Bessonov I.V., Mednikova E.A. Foam Polymers in Multifunctional Insulating Coatings. Polymers. 2021. Vol. 13. No. 21. 3698. DOI: https://doi.org/10.3390/polym13213698
2. Popov I.I., Shitikova M.V., Levchenko A.V., Zhukov A.D. Experimental identification of the fractional parameter of the fractional derivative standard linear solid model for fiber-reinforced rubber concrete. Mechanics of advanced materials and structure. 2023. March. DOI: https://doi.org/10.1080/15376494.2023.2191600
3. Ter-Zakaryan K.A., Zhukov A.D., Bessonov I.V., Bobrova E.Y., Pshunov T.A., Dotkulov K.T. Modified polyethylene foam for critical environments. Polymers. 2022. Vol. 14. No. 21. 4688. DOI: https://doi.org/10.3390/polym14214688
4. Гудков П., Каган П., Пилипенко А., Жукова Е.Ю., Зиновьева Е.А., Ушаков Н.А. Использование систем теплоизоляции малоэтажных зданий как компонента информационных моделей. Материалы XXII Международной научной конференции «Строительство – формирование среды обитания» (ФОРМ-2019). Ташкент. Узбекистан. 2019. Т. 97. 01039. DOI: https://doi.org/10.1051/e3sconf/20199701039
4. Gudkov P., Kagan P., Pilipenko A., Zhukova E.Yu., Zinov’eva E.A., Ushakov N.A. Ispol’zovanie sistem teploizolyatsii maloetazhnykh zdanii kak komponenta informatsionnykh modelei. Materials of the XXII International Scientific Conference “Construction – Habitat Formation” (FORM-2019). Tashkent. Uzbekistan. 2019. Vol. 97. 01039. DOI: https://doi.org/10.1051/e3sconf/20199701039
5. Zhukov A., Stepina I., Bazhenova S. Ensuring the durability of buildings through the use of insulation systems based on polyethylene foam. Buildings. 2022. Vol. 12. No. 11. 1937. DOI: https://doi.org/10.3390/buildings12111937 – 10 Nov 2022
6. Umnyakova N. Heat exchange peculiarities in ventilated facades air cavities due to different wind speed. Advances and Trends in Engineering Sciences and Technologies II. CRC Press, Taylor & Francis Group. London. UK. 2017.
7. Umnyakova N., Chernysheva O. Thermal features of three-layer brick walls. Proceeding of XXV Polish-Russian – Slovak seminar “Theoretical Foundation of Civil Engineering”. Zilina, Slovakia. 2016. Vol. 153, pp. 805–809. DOI: https://doi.org/10.1016/j.proeng.2016.08.246
8. Jelle B.P., Gustavsen A., Baetens R. The path to the high-performance thermal building insulation materials and solutions of tomorrow. Journal of building physics. Vol. 34. Iss. 2. 2010, pp. 99–123. DOI: https://doi.org/10.1177/1744259110372782
9. Ter-Zakaryan K.A., Zhukov A.D. Short overview of practical application and further prospects of materials based on crosslinked polyethylene. In: Thomas J., Thomas S., Ahmad Z. (eds) Crosslinkable Polyethylene. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore 2021. DOI: https://doi.org/10.1007/978-981-16-0514-7_12
10. Ibrahim O., Younes R. Progress to global strategy for management of energy systems. Journal of Building Engineering. 2018. Vol. 20, pp. 303–316. DOI: https://doi.org/10.1016/j.jobe.2018.07.020
11. Jiayu Shang. Construction of Green Community Index System under the Background of Community Construction. Journal of Building Construction and Planning Research. 2019. No. 7, pp. 115–125. DOI: https://doi.org./10.4236/jbcpr.2019.74008
12. Gnip I.J., Keršulis V.J., Vaitkus S.J. Predicting the deformability of expanded polystyrene in long-term compression. Mech. Compos. Mater. 2005. 41 (5), pp. 407–414. DOI: https://doi.org/10.1007/s11029-005-0066-0
13. Nardi L., Perilli S., De Rubeis T., Sfarra S., Ambrosini D. Influence of insulation defects on the termal performance of walls an experimental and numerical investigation. Journal of Building Engineering. 2019. No. 21, pp. 355–365. DOI: https://doi.org/10.1016/j.jobe.2018.10.029
14. Shen X., Li L., Cui W., Feng Y. Coupled heat and moisture transfer in building material with freezing and thawing process. Journal of Building Engineering. 2018. No. 20, pp. 609–615. DOI: https://doi.org/10.1016/j.jobe.2018.07.026
15. Chen I., Sun X., Ren I., Liang W., Wang K. Effects of thermo-oxidative aging on structure and low temperature impact performance of rotationally molded products. Polymer Degradation and Stability. 2019. 161, pp. 150–156. DOI: https://doi.org/10.1016/j.polymdegradstab.2019.01.016
16. Лоскутов С.Р., Шапченкова С.Р., Анискина А.А. Термический анализ древесины основных лесообразующих пород Средней Сибири // Сибирский лесной журнал. 2015. № 6. С. 17–30. DOI: 10.15372/SJFS20150602
16. Loskutov S.R., Shapchenkova O.A., Aniskina A.A. Termicheskii analiz drevesiny osnovnykh lesoobrazuyushchikh porod Srednei Sibiri. Sibirskiy lesnoy jurnal. 2015. No. 6, pp. 17–30. (In Russian). DOI: 10.15372/SJFS20150602

For citation: Stepina I.V., Zhukov A.D., Bazhenova S.I., Stenechkina K.S. Increasing the thermal stability of wood-based materials. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 8, pp. 64–69. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-8-64-69


Print   Email