Influence of Temperature on Tensile Behavior of Composite Material Used in Strengthening Reinforced Concrete Structures

Number of journal: 5-2023
Autors:

Denisova A.D.,
Shekhovtsov A.S.,
Kuzhman E.D.

DOI: https://doi.org/10.31659/0044-4472-2023-5-46-53
УДК: 666.98

 

AbstractAbout AuthorsReferences
The paper covers the results of the composite material of externally-bonded reinforcement system (FRP laminate) at temperatures from -75 to +60 degrees. Strain-load diagrams are given. The stress strain diagrams are presented, as well as the influence of the temperature of FRP during testing on its tensile strength, the corresponding value of the limit strains, the modulus of elasticity along the fibers. It was found that at the temperature of +60 degrees, the stress strain diagram changes. This work is a part of an experimental study of the mechanical properties of carbon FRP laminate, carried out in SPbGASU. The results obtained can be used in the development of methods for calculating a reinforced concrete structure with externally-bonded reinforcement systems for fire resistance, as well as in the selection of fire protection.
A.D. DENISOVA, Postgraduate Student (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.S. SHEKHOVTSOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.D. KUZHMAN, Master’s Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Saint-Petersburg State University of Architecture and Civil Engineering (4, 2nd Krasnoarmeyskaya Street, Saint Petersburg 190005, Russian Federation)

1. Wu Hw-Ch., Eamon Ch. D. Strengthening of concrete structures using fiber reinforced polymers (FRP). Woodhead Publishing. 2017. p. 332.
2. Al-Mahaidi R., Kalfat R. Rehabilitation of concrete structures with fiber-reinforced polymer. Butterworth-Heinemann. 2018. p. 403.
3. Bai J. Advanced fiber-reinforced polymer (FRP) composites for structural applications. Woodhead Publishing. 2023. p. 826.
4. Ahmed A., Kodur V.K.R. Effect of bond degradation on fire resistance of FRP-strengthened reinforced concrete beams. Composites Part B: Engineering. 2011. Vol. 42. Iss. 2, pp. 226–237. https://doi.org/10.1016/j.compositesb.2010.11.004
5. Ahmed A., Kodur V.K.R. The experimental behavior of FRP-strengthened RC beams subjected to design fire exposure. Engineering Structures. 2011. Vol. 33. Iss. 7, pp. 2201–2211. https://doi.org/10.1016/j.engstruct.2011.03.010
6. Qin G., Na J., Mu W. Effect of continuous high temperature exposure on the adhesive strength of epoxy adhesive, CFRP and adhesively bonded CFRP-aluminum alloy joints. Composites Part B: Engineering. 2018. Vol. 154, pp. 43–55. https://doi.org/10.1016/j.compositesb.2018.07.059
7. Jia Zh., Hui D., Yuan G. Mechanical properties of an epoxy-based adhesive under high strain rate loadings at low temperature environment. Composites Part B: Engineering. 2016. Vol. 105, pp. 132–137.
8. Firmo J.P., Roquette M.G., Correia J.R. Influence of elevated temperatures on epoxy adhesive used in CFRP strengthening systems for civil engineering application. International Journal of Adhesion and Adhesives. 2019. Vol. 93, pp. 9–18. https://doi.org/10.1016/j.ijadhadh.2019.01.027
9. Galvez P., Abenojar J., Martinez M.A. Effect of moisture and temperature on the thermal and mechanical properties of a ductile epoxy adhesive for use in steel structures reinforced with CFRP. Composites Part B: Engineering. 2016. Vol. 176, pp. 1–11. https://doi.org/10.1016/j.compositesb.2019.107194
10. Ke L., Li Ch., Hun J. Effect of elevated temperatures on mechanical behavior of epoxy adhesives and CFRP-steel hybrid joints. Composite Structures. 2020. Vol. 235, pp. 1–29. https://doi.org/10.1016/j.compstruct.2019.111789
11. Borsellino Ch., Urso S., Alderucci T. Temperature effects on failure mode of double lap glass-aluminium and glass-GFRP joints with epoxy and acrylic adhesive. International Journal of Adhesion and Adhesives. 2021. Vol. 105, pp. 1–10. https://doi.org/10.1016/j.ijadhadh.2020.102788
12. Денисова А.Д., Шеховцов А.С., Кужман Е.Д. Результаты механических испытаний композиционного материала, применяемого при усилении железобетонных конструкций внешним армированием // Жилищное строительство. 2022. № 11. С. 44–50. DOI: https://doi.org/10.31659/0044-4472-2022-11-44-50
12. Denisova A.D., Shekhovtsov A.S., Kuzhman E.D. Results of mechanical tests of composite material used in strengthening reinforced concrete structures with external reinforcement. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 11, pp. 44–50. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-11-44-50
13. Денисова А.Д., Шеховцов А.С., Кужман Е.Д. Влияние ширины композиционного материала, применяемого при усилении железобетонных конструкций, на его работу при растяжении // Строительные материалы. 2022. № 11. С. 26–31. DOI: https://doi.org/10.31659/0585-430X-2022-808-11-26-31
13. Denisova A.D., Shekhovtsov A.S., Kuzhman E.D. Width effect of composite material on its tensile behavior at strengthening reinforced concrete structures. Stroitel’nye Materialy [Construction Materials]. 2022. No. 11, pp. 26–31. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-808-11-26-31

For citation: Denisova A.D., Shekhovtsov A.S., Kuzhman E.D. Influence of Temperature on tensile behavior of composite material used in strengthening reinforced concrete structures. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 5, pp. 46–53. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-5-46-53


Print   Email