International Research Experience in the Field of Additive Construction Manufacturing

Number of journal: 11-2023
Autors:

Pustovgar A.P.,
Adamtsevich L.A.,
Adamtsevich A.O.

DOI: https://doi.org/10.31659/0044-4472-2023-11-4-10
УДК: 624

 

AbstractAbout AuthorsReferences
An analysis of domestic and foreign research was carried out in order to identify promising areas for further research in the field of development of additive technologies in construction. The basis for the study was data from the national bibliographic database (DB) of scientific citation - RSCI, as well as the international database Scopus for the period from 2015 to 2023. Publications before 2015 are characterized as single declarative ones and do not contain applied developments. Key words used in the samples were searched for in publication titles, abstracts, key words in journal articles, books, conference proceedings, dissertations, reports, deposited manuscripts, patents, and grants. An analysis of foreign publications has shown that the main differences in construction 3D printing technology are associated with the material used as “ink” for the 3D printer and the very design of the extruder with which this material is applied to the substrate. Publications can be divided into studies on the characteristics of the mixture used in 3D printing; research of technologies and equipment; assessment of construction sustainability when introducing additive construction production. Additive technologies provide the opportunity to create unique, complex and customized architectural solutions that would not be possible with traditional construction methods. The durability of structures and products produced using additive technology remains poorly understood; reliability and safety of structures erected by layer-by-layer extrusion under the influence of dynamic, including seismic, loads; waterproofness and breathability of structures built using additive construction technology, etc.
A.P. PUSTOVGAR1,2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
L.A. ADAMTSEVICH1, Сandidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.O. ADAMTSEVICH1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Mechanical Engineering Research Institute named after A.A. Blagonravov of the Russian Academy of Sciences (4, M. Kharitonyevskiy Pereulok, 101990 Moscow, Russian Federation)

1. Адамцевич А.О., Пустовгар А.П. Аддитивное строительное производство: исследование эффекта анизотропии прочностных характеристик бетона // Строительные материалы. 2022. № 9. С. 18–24. DOI: https://doi.org/10.31659/0585-430X-2022-806-9-18-24
1. Adamtsevich A.O., Pustovgar A.P. Additive construction production: study of the effect of anisotropy of the strength characteristics of concrete. Stroitel’nye Materialy [Construction Materials]. 2022. No. 9, pp. 18–24. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-806-9-18-24
2. Мухаметрахимов Р.Х. Исследование пластифицирующих добавок на основе эфиров поликарбоксилатов на свойства бетонов, формуемых методом 3D-печати // Строительные материалы и изделия. 2022. Т. 5. № 5. С. 42–58.
2. Mukhametrakhimov R.Kh. Study of plasticizing additives based on polycarboxylate esters on the properties of concrete molded by 3D printing. Stroitel’nye materialy i isdeliya. 2022. Vol. 5. No. 5, pp. 42–58. (In Russian).
3. Зиганшина Л.В. Мелкозернистые бетоны в технологии аддитивного производства (3D-печати): Дис. ... канд. техн. наук. Казань, 2022. 282 с.
3. Ziganshina L.V. Fine-grained concrete in additive manufacturing technology (3D printing). Cand. Diss. (Engineering) Kazan. 2022. 282 p. (In Russian).
4. Патент РФ 2794037. C1 Способ 3D-печати бетоном с длительным технологическим перерывом. Мухаметрахимов Р.Х., Зиганшина Л.В. Заявл. 01.11.2022. Опубл. 11.04.2023.
4. Patent RF 2794037 C1. Sposob 3D-pechati betonom s dlitel’nym tekhnologicheskim pereryvom [A method for 3D printing concrete with a long technological break]. Mukhametrakhimov R.Kh., Ziganshina L.V. Declared 01.11.2022. Published 11.04.2023. (In Russian).
5. Патент РФ 2795632 C1. Способ 3D-печати. Мухаметрахимов Р.Х. Заявл. 01.11.2022. Опубл. 05.05.2023.
5. Patent RF 2795632 C1. Sposob 3D-pechati. [A method for 3D printing]. Mukhametrakhimov R.Kh. Declared 01.11.2022. Published 05.05.2023. (In Russian).
6. Rahul A.V., Meena H., Chani Z. 3D printable concrete: Mixture design and test methods. Cement and Concrete Composites. 2019. No. 97, pp. 13–23. https://doi.org/10.1016/j.cemconcomp.2018.12.014
7. Pham L., Tran P., Sanjayan J. Steel fibres reinforced 3D printed concrete: Influence of fibre sizes on mechanical performance. Construction and Building Materials. 2020. No. 250. https://doi.org/10.1016/j.conbuildmat.2020.118785
8. Arunothayan A.R., Nematollahi B., Ranade R., Bong S.H., Sanjayan J. Development of 3D-printable ultra-high performance fiber-reinforced concrete for digital construction. Construction and Building Materials. 2020. No. 257, 119546. https://doi.org/10.1016/j.conbuildmat.2020.119546
9. Zhang Y., Zhang Y., She W., Yang L., Liu G., Yang Y. Rheological and harden properties of the high-thixotropy 3D printing concrete. Construction and Building Materials. 2019. No. 201, pp. 278–285. https://doi.org/10.1016/j.conbuildmat.2018.12.061
10. Tay Y.W.D., Ting G. H. A., Qian Y., Panda B., He L., Tan M. J. Time gap effect on bond strength of 3D-printed concrete. Virtual and Physical Prototyping. 2019. No.14, pp.104-113.
11. Rahul A.V., Santhanam M., Meena H., Chani Z. Mechanical characterization of 3D printable concrete. Construction and Building Materials. 2019. No. 227, 116710. https://doi.org/10.1016/j.conbuildmat.2019.116710
12. Panda B., Mohamed N.A.N., Paul S.C., Singh G.B., Tan M.J., Savija B. The effect of material fresh properties and process parameters on buildability and interlayer adhesion of 3D printed concrete. Materials. 2019. No. 12 (13), 2149. https://doi.org/10.3390/ma12132149
13. Labonette N., Ronnquist A., Manum B. Ruther P. Additive construction: state-of-the-art, challenges and opportunities. Automation in Construction. 2016. No. 72 (3), pp. 347–366. https://doi.org/10.1016/j.autcon.2016.08.026
14. Khan S.A., Koc M., Al-Ghamdi S.G. Sustainability assessment, potentials and challenges of 3D printed concrete structures: A systematic review for built environmental applications. Journal of Cleaner Production. 2021. No. 303, 127027. https://doi.org/10.1016/j.jclepro.2021.127027
15. Han Y., Yang Z., Ding T., Xiao J. Environmental and economic assessment on 3D printed buildings with recycled concrete. Journal of Cleaner Production. 2021. No. 278, 123884. https://doi.org/10.1016/j.jclepro.2020.123884
16. Mohammad, M., Masad E., Al-Ghamdi S. 3d concrete printing sustainability: A comparative life cycle assessment of four construction method scenarios. Buildings. 2020. 10 (12). 245. https://doi.org/10.3390/buildings10120245

For citation: Pustovgar A.P., Adamtsevich L.A., Adamtsevich A.O. International research experience in the field of additive construction manufacturing. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 11, pp. 4–10. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-11-4-10


Print   Email