The use of Thermography to Determine the Boundary Conditions of Heat Exchange on The Inner Surfaces of Translucent Enclosing Structures

Number of journal: 12-2023
Autors:

Konstantinov A.P.,
Aksenov I.S.,
Elohov A.E.

DOI: https://doi.org/10.31659/0044-4472-2023-12-18-21
УДК: 692.82

 

AbstractAbout AuthorsReferences
The paper presents an approach to determining the boundary conditions of heat transfer (heat transfer coefficients) on the inner surfaces of translucent enclosing structures using thermal imaging data. To implement this approach, it is necessary to use additional equipment in the form of sheets of paper. A sheet of paper is installed close to and perpendicular to the investigated surface of the structure. At the same time, the profile of the sheet of paper exactly repeats the geometry of the surface under study. Based on the results of thermal imaging, thermograms and temperature graphs are constructed on characteristic areas of the inner surface of the translucent enclosing structure. They are used to determine the thickness of the boundary layer of air adjacent to the inner surface of the translucent enclosing structure. These data are used later to calculate the heat transfer coefficient at the inner surface of these structures. The presented approach was implemented in the course of field studies of heat transfer conditions at the internal surfaces of four PVC windows.
А.P. KONSTANTINOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.S. AKSENOV1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.E. ELOHOV2, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 LLC «Institute of Passive House» (2-1-4-X11-407, Kirpichnye vyemki steet, Moscow, 117405, Russian Federation)

1. Зимин А.Н., Бочков И.В., Крышов С.И., Умнякова Н.П. Сопротивление теплопередаче и температура на внутренних поверхностях светопрозрачных ограждающих конструкций жилых зданий г. Москвы // Жилищное строительство. 2019. № 6. С. 24–29. DOI: https://doi.org/10.31659/0044-4472-2019-6-24-29
1. Zimin A.N., Bochkov I.V., Kryshov S.I., Umnyakova N.P. Heat transfer resistance and temperature on internal surfaces of translucent enclosing structures of residential buildings of Moscow. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 6, pp. 24–29. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-6-24-29
2. Константинов А.П., Крутов А.А., Тихомиров А.М. Оценка теплозащитных характеристик оконных блоков из ПВХ профилей в зимний период эксплуатации // Строительные материалы. 2019. № 8. С. 65–72. DOI: https://doi.org/10.31659/0585-430X-2019-773-8-65-72
2. Konstantinov A.P., Krutov A.A., Tikhomirov A.M. Assessment of the PVC windows thermal characteristics in winter. Stroitel’nye Materialy [Construction Materials]. 2019. No. 8, pp. 65–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-773-8-65-72
3. Умнякова Н.П., Бутовский И.Н., Верховский А.А., Чеботарев А.Г. Требования к теплозащите наружных ограждающих конструкций высотных зданий // Жилищное строительство. 2016. № 12. С. 7–11.
3. Umnyakova N.P., Butovsky I.N., Verkhovsky A.A., Chebotarev A.G. Requirements to heat protection of external enclosing structures of high-rise buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2016. No. 12, pp. 7–11. (In Russian).
4. Савин В.К. Строительная физика: энергоперенос, энергоэффективность, энергосбережение. М.: Лазурь, 2005. 432 с.
4. Savin V.K. Stroitel’naya fizika: energoperenos, energoeffektivnost’, energosberezhenie [Construction physics: energy transfer, energy efficiency, energy saving]. Moscow: Lazur’. 2005. 432 p.
5. Bockh P. Heat Transfer. Basics and Practice. London – New York: Springer Heidelberg Dordrecht. 2012. 291 с.
6. Mokheimer E.M.A. Heat transfer from extended surfaces subject to variable heat transfer coefficient. Heat and Mass Transfer. 2003. Vol. 39, pp. 131–138. https://doi.org/10.1007/s00231-002-0338-3
7. Elmahdy A.H., Frank T. Heat transfer at the edge of sealed insulating glass units: Comparison of hot box measurements with finite-difference modeling. ASHRAE Transactions. 1993. No. 99, pp. 915–922.
8. Curcija D. Effect of realistic boundary conditions in computer modeling of condensation resistanse for fenestration systems. Thermal Envelopes. 1998. No. 7, pp. 405–414.
9. McGowan A.G. Computer simulation of window condensation potential. Thermal Envelopes. 1998. No. 7, pp. 229–235.
10. Wright J.L. A Simplified numerical method for assessing the condensation resistance of windows. ASHRAE Transactions. 1998. No. 1. Pt. 1, pp. 1–8.
11. Yazdanian M. Measurement of the exterior convective film coefficient for windows in low-rise buildings. ASHRAE Transactions. 1994. № 100.
12. Дроздов В.А. Теплообмен в светопрозрачных ограждающих конструкциях. М.: Стройиздат, 1979. 307 с.
12. Drozdov V.A. Teploobmen v svetoprozrachnyh ograzhdayushchih konstrukciyah [Heat exchange in translucent enclosing structures]. Moscow: Stroyizdat, 1979. 307 p.
13. Умняков П.Н. Тепловой и экологический комфорт: проектирование процессов оказания услуг. М.: Форум, 2009. 447 с.
13. Umnjakov P.N. Teplovoj i jekologicheskij komfort: proektirovanie processov okazanija uslug [Thermal and environmental comfort: designing service delivery processes]. Moscow: Forum, 2009. 447 p.
14. Крутов А.А., Константинов А.П. Граничные условия для расчета температурных полей узлов примыкания окон в зоне подоконника // Жилищное строительство. 2022. № 11. С. 11–18. DOI: https://doi.org/10.31659/0044-4472-2022-11-11-18
14. Krutov A.A., Konstantinov A.P. Boundary conditions for calculating temperature fields of window junction nodes in the window sill area. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 11, pp. 11–18. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-11-11-18
15. Tywoniak J, Stanek K., Kny M, Adamovský D. Studies on internal surface heat transfer in the window area. E3S Web of Conferences. 2020. 172, 24007. https://doi.org/10.1051/e3sconf/202017224007
16. Hua Ge. Study on overall thermal performance of metal curtain walls. Hua Ge – Concordia University, Monreal. 2002. 326 p.

For citation: Konstantinov A.P., Aksenov I.S., Elohov A.E. The use of thermography to determine the boundary conditions of heat exchange on the inner surfaces of translucent enclosing structures. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 12, pp. 18–21. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-12-18-21


Print   Email